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Chapter 1

Introduction

Geometric numerical integration is concerned with the structure-preserving discretization of differ-
ential equations. The structure to be preserved by a numerical discretization is often of geometric
nature, and hence the name.

An exemplary and important situation, which is considered in this thesis, is the discretization
of Hamiltonian differential equations. These equations are characterized by the geometric property
that their flow is a symplectic map. A typical geometric numerical integrator for a Hamiltonian
differential equation aims for preserving this characteristic property in the sense that the numerical
flow is again a symplectic map. Such methods are called symplectic methods. Many of them are
in use today and have become standard methods for Hamiltonian differential equations.

But what is the benefit of a structure-preserving discretization? As a general rule of thumb, there
is hope that a structure-preserving discretization is able to reproduce qualitative properties of the
exact solution that are related to the structure that is preserved by the discretization.

To make this vague statement more precise, let us consider again the case of Hamiltonian
differential equations and their discretization by symplectic methods. Solutions to such equations
have remarkable qualitative properties on long time intervals. For example, they have conserved
quantities such as the energy, and they behave stable under certain perturbations on long time
intervals, which is the topic of the classical field of Hamiltonian perturbation theory. As symplectic
methods preserve the characteristic structure of Hamiltonian differential equations, there is thus
hope that they can reproduce such qualitative properties of solutions on long time intervals. And,
in fact, symplectic methods do behave very well on long time intervals, which are much longer
than those covered by a standard numerical analysis. Historically, this good long-time behaviour
was actually the reason why they became so popular, long before this began to be analyzed
mathematically.

In the case of (non-oscillatory) Hamiltonian ordinary differential equations, a good and math-
ematically rigorous understanding of the long-time behaviour of symplectic methods has been
achieved meanwhile. This is well-documented in the monographs by Sanz-Serna & Calvo (1994),
Leimkuhler & Reich (2004), Hairer, Lubich & Wanner (2006), Feng & Qin (2010) and Blanes &
Casas (2016). For example, one of the remarkable properties of symplectic methods applied to
non-oscillatory Hamiltonian ordinary differential equations is the near-conservation of the energy
on long time intervals, which has been rigorously proven by Benettin & Giorgilli (1994).

The situation is different in the case of Hamiltonian partial differential equations. For these
equations, the mathematical understanding of the long-time behaviour of symplectic methods lags
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significantly behind the developments for Hamiltonian ordinary differential equations. One reason
is of course the diversity of effects that can appear in different Hamiltonian partial differential
equations. But even if one restricts to certain model classes of Hamiltonian partial differential
equations and specific symplectic methods, there are significant difficulties that bedevil a sound
mathematical understanding of the long-time behaviour in such special situations. One difficulty
comes from the oscillations that are introduced in the dynamics by unbounded operators in
the partial differential equation such as the Laplacian or more complicated differential operators.
After a discretization in space, the largest frequency in the system will typically scale polynomially
in the inverse of the spatial mesh width. The oscillations thus get higher and higher when the
spatial discretization is refined. The presence of such high oscillations, however, is known (see,
e.g., Hairer, Lubich & Wanner (2006) and Hairer (2009)) to be an obstacle to (directly) use those
techniques (such as a backward error analysis) that have been developed over the years to analyze
symplectic methods applied to (non-oscillatory) Hamiltonian ordinary differential equations, and
that produced spectacular results on their long-time behaviour. A second difficulty comes from
the fact that a Hamiltonian partial differential equation is an infinite-dimensional Hamiltonian
system. After a discretization in space, the system is finite, but its size gets larger and larger when
the spatial discretization is refined. The wish to have estimates that are uniform in the spatial
mesh width thus requires to analyze the system independently of its size, using an appropriate
functional analytic framework that accounts for the underlying infinite-dimensional problem.

In recent years, there is ongoing effort to shed some light on the long-time behaviour of symplectic
methods applied to Hamiltonian partial differential equations. Rigorous results have been obtained
using new techniques like modulated Fourier expansions or Birkhoff normal forms of numerical
methods and careful adaptions of more classical tools like backward error analysis.

In the present thesis, some recent results in this context are collected. The focus is on nonlinear
Schrödinger equations (Chapter 2) and nonlinear wave equations (Chapter 3). These equations
are rather universal physical models to describe the propagation of nonlinear waves, see, e.g.,
Whitham (1974). The considered geometric numerical integrators for them are splitting integrators
and trigonometric integrators, which are standard numerical methods for these equations.

To study whether symplectic methods can reproduce qualitative properties of the exact so-
lution on long time intervals, a thorough understanding of the long-time behaviour of the exact
solution itself is required. Therefore, also some results on the mathematical analysis of nonlinear
Schrödinger and nonlinear wave equations are included in this thesis, always with the aim of
understanding the corresponding long-time properties also after a numerical discretization.

Finally, some results on finite-time error bounds for the considered numerical methods are
included as well.



Chapter 2

Geometric numerical integration of
nonlinear Schrödinger equations

In this chapter, some results on the geometric numerical integration of nonlinear Schrödinger
equations are described.

Nonlinear Schrödinger equations appear as a reduced model in a variety of physical applications,
ranging from nonlinear optics to Bose–Einstein condensation. We refer to the monograph by
Agrawal (2013) for their use in nonlinear optics and to Section 1.16 of Tao (2010) and the
monographs by Kevrekidis, Frantzeskakis & Carretero-González (2008, 2015) for their use in
Bose–Einstein condensation and a heuristic derivation. Triggered by the universality of the
equations as a physical model and, at the same time, by their rich mathematical structure, there
are also a lot of mathematical activities around these equations, see, e.g., the monographs by
Sulem & Sulem (1999), Bourgain (1999), Zhidkov (2001), Cazenave (2003), Tao (2006), Carles
(2008), Grébert & Kappeler (2014), Koch, Tataru & Vişan (2014), Linares & Ponce (2015) and
Kevrekidis, Frantzeskakis & Carretero-González (2015). Of particular importance for us is the
fact that nonlinear Schrödinger equations are classical examples of Hamiltonian partial differential
equations. A standard numerical method for nonlinear Schrödinger equations is the split-step
Fourier method. It is a symplectic method for these Hamiltonian differential equations, and hence
a geometric numerical integrator.

This chapter on the geometric numerical integration of nonlinear Schrödinger equations is
organized as follows. In Section 2.1, the considered cubic nonlinear Schrödinger equation is
introduced. The split-step Fourier method is described in Section 2.2. The remaining sections
are then concerned with the long-time behaviour of this symplectic method and also of the exact
solution. In these Sections 2.3, 2.4 and 2.5, the results of the articles Gauckler (2016a), Faou,
Gauckler & Lubich (2013) and Faou, Gauckler & Lubich (2014) are described, which are included
in this thesis as Appendices A, B and C, respectively.

Throughout this chapter, the Euclidean norm on Rd (and also Cd) is denoted by |·|, and the
corresponding scalar product on Rd is denoted by a dot (x · y = xT y for x, y ∈ Rd)

2.1 The nonlinear Schrödinger equation

The cubic nonlinear Schrödinger equation (NLS) is the time-dependent partial differential equation

i∂tψ = −∆ψ + λ|ψ|2ψ, ψ = ψ(x, t), (2.1)



4 Chapter 2. Geometric numerical integration of NLS

where t ≥ 0 denotes time and x = (x1, . . . , xd) ∈ Rd denotes space. The right-hand side of the
equation consists of a linear part given by the Laplacian

−∆ = −∂2x1
− · · · − ∂2xd

and a nonlinear part given by the cubic nonlinearity λ|ψ|2ψ with a given real-valued prefactor
λ 6= 0. The sign of the factor λ in front of the nonlinearity makes the nonlinearity focusing if it is
negative, and defocusing if it is positive. We assume in the following that this factor is normalized
to

λ = ±1,

which can be achieved by rescaling ψ 7→
√
|λ|ψ.

Boundary conditions. Typical solutions to (2.1) decay in space to zero as |x| goes to infinity.
For a numerical discretization, the infinite spatial domain Rd of equation (2.1) is therefore usually
truncated to a large but finite box, on which periodic boundary conditions are imposed. In the
following, we therefore consider (2.1) on such a box. For simplicity, we assume that its side length
is normalized to 2π, that is, we impose 2π-periodic boundary conditions in space. The spatial
variable x thus belongs to the d-dimensional torus

Td = Rd/(2πZd).

Hamiltonian structure. The nonlinear Schrödinger equation (2.1) is a Hamiltonian partial
differential equation with Hamiltonian function (total energy) given by

H(ψ) =
1

(2π)d

∫
Td

(
|∇ψ|2 + 1

2λ|ψ|
4
)

dx. (2.2)

We consider this Hamiltonian function for functions ψ = ψ(x) in a Sobolev space Hs(Td,C) of
complex-valued functions on the torus Td, and we require s ≥ 1 and s > d

2 . In this situation,
the Hamiltonian function is well-defined by the continuous Sobolev embedding of Hs(Td,C) into
L∞(Td,C). In addition, the considered Sobolev space then forms an algebra.

To see that the function H is in fact a Hamiltonian function for the nonlinear Schrödinger
equation (2.1), we write

ψ =
q + ip√

2

with real-valued q and p. In these new variables (q, p) ∈ Hs(Td,R)×Hs(Td,R), the Hamiltonian
function becomes

H(q, p) =
1

(2π)d

∫
Td

(
1
2 |∇q|

2 + 1
2 |∇p|

2 + 1
8λ
(
q2 + p2

)2)
dx,

and the nonlinear Schrödinger equation reads1

∂tq = −∆p+ 1
2λ
(
q2 + p2

)
p = ∇pH(q, p),

∂tp = ∆q − 1
2λ
(
q2 + p2

)
q = −∇qH(p, q).

1We denote by ∇qH(q, p) ∈ H−s(Td,R) the gradient with respect to q in (q, p) of the Hamiltonian function
H : Hs(Td,R)×Hs(Td,R)→ R, which is defined via the Fréchet derivative dqH(q, p) : Hs(Td,R)→ R of H with
respect to q in (q, p) by the relation

dqH(q, p)u =
〈
∇qH(q, p), u

〉
L2 for all u ∈ Hs(Td,R),

where 〈·, ·〉L2 is the scalar product on L2(Td,R). Similarly, we denote by ∇pH(q, p) the gradient of H with respect
to p.



Chapter 2. Geometric numerical integration of NLS 5

This is the classical form of a Hamiltonian differential equation, but on the infinite-dimensional
state space Hs(Td,R)×Hs(Td,R). In this sense, the nonlinear Schrödinger equation (2.1) is an
infinite-dimensional Hamiltonian system or a Hamiltonian partial differential equation.

Resonances. Resonances form a problem that is omnipresent in the long-time analysis of
Hamiltonian partial differential equations such as the nonlinear Schrödinger equation (2.1). More
precisely, the problem are resonances among the eigenvalues (frequencies) of the linear part of
the equation. Integer linear combinations of these frequencies are introduced into the dynamics
by the nonlinearity in the equation, and resonances occur when these integer linear combinations
equal a frequency. For the considered nonlinear Schrödinger equation (2.1), the linear part is −∆

on Td with eigenvalues (frequencies) |j|2, j ∈ Zd. They are resonant because some of their integer
linear combinations vanish.

2.2 The split-step Fourier method

We describe the split-step Fourier method of Hardin & Tappert (1973) to discretize the nonlinear
Schrödinger equation (2.1) in time and space. This method has become one of the standard
numerical methods for this equation. It is a symplectic method, and hence a geometric numerical
integrator for this Hamiltonian partial differential equation.

Discretization in space. We first discretize (2.1) in space by Fourier collocation. This Fourier
pseudospectral method is based on the ansatz space

VK =

{∑
j∈K

v̂je
i(j·x) : v̂j ∈ C

}
, K =

{
−K, . . . ,K − 1

}d
,

of trigonometric polynomials of degree K. Recall that such a trigonometric polynomial is uniquely
determined by its values in the discrete points

xk =
kπ

K
, k ∈ K. (2.3)

The idea is to replace, at each time t, the infinite spatial Fourier series of the solution ψ(x, t)

of (2.1) by a trigonometric polynomial ψK(x, t) from the ansatz space VK :

ψ(x, t) ≈ ψK(x, t) =
∑
j∈K

ψ̂Kj (t)ei(j·x).

Inserting this ansatz ψK into the nonlinear Schrödinger equation (2.1) obviously does not give
a closed equation for ψK because the cubic nonlinearity leads to a trigonometric polynomial of
higher degree than K. Instead of projecting the nonlinearity in an L2-orthogonal way back to
the ansatz space VK (Galerkin method), we proceed here differently and use a collocation based
on the discrete points xk of (2.3), which turns out to be computationally efficient thanks to the
fast Fourier transform. More precisely, we (only) require that the ansatz ψK satisfies (2.1) in the
discrete points xk of (2.3). This yields the spatially discrete and finite system of equations

i∂tψ
K(xk, t) =

(
−∆ψK

)
(xk, t) + λ

∣∣ψK(xk, t)
∣∣2ψK(xk, t), k ∈ K.

This spatially discrete system is the semi-discretization in space that we consider henceforth. It
uniquely determines the trigonometric polynomial ψK because a trigonometric polynomial from
the space VK is uniquely determined by its values in the discrete points xk of (2.3). Denoting by
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IK the corresponding trigonometric interpolation of degree K, that is, the operator that assigns
a (sufficiently regular) 2π-periodic function the uniquely determined trigonometric polynomial
from VK that takes the same values in the discrete points xk of (2.3), we can rewrite the spatially
discrete system as an equation for the time-dependent trigonometric polynomial ψK = ψK(x, t):

i∂tψ
K = −∆ψK + λ IK

(
|ψK |2ψK

)
. (2.4)

Initial values at time t0 = 0 are computed by

ψK(·, 0) = IK
(
ψ(·, 0)

)
.

The spatial semi-discretization in this form is now discretized in time.

Discretization in time. The discretization in time is based on a splitting integrator. For a
general introduction to these integrators, we refer to McLachlan & Quispel (2002) and Chapters II
and III of Hairer, Lubich & Wanner (2006). In our concrete situation, we split the spatial
semi-discretization (2.4) into its linear and its nonlinear part,

i∂tψ
K = −∆ψK and i∂tψ

K = λ IK
(
|ψK |2ψK

)
. (2.5)

The main observation is that these split equations are easy to solve: The linear equation of (2.5)
is easy to solve in Fourier space, where the jth Fourier coefficient ψ̂Kj (t) of the solution ψK(x, t) =∑
j∈K ψ̂

K
j (t)ei(j·x) is given by

ψ̂Kj (t) = e−i|j|
2tψ̂Kj (0), j ∈ K. (2.6)

The nonlinear equation of (2.5) is easy to solve pointwise in physical space, where we have in the
discrete points xk of (2.3)

ψK(xk, t) = e−iλ|ψ
K(xk,0)|2tψK(xk, 0), k ∈ K, (2.7)

from which the solution can be computed by trigonometric interpolation. In contrast to the flow
of the nonlinear Schrödinger equation (2.1), the flows φtlinear and φtnonlinear of the linear and the
nonlinear equation in (2.5) are thus easy to compute. The idea of a splitting integrator is to use
these easily computable flows to approximate the solution to the original equation at discrete
times.

More precisely, denoting by τ a time step-size, the considered splitting integrator computes
time-discrete approximations

ψKn ≈ ψK(·, tn), tn = nτ, n = 0, 1, 2, . . . ,

by the following composition of the flows of the split equations:

ψKn+1 = φτlinear ◦ φτnonlinear
(
ψKn
)
, ψK0 = IK

(
ψ(·, 0)

)
. (2.8)

Recall that the flows φτlinear and φ
τ
nonlinear appearing in the method (2.8) can be computed from (2.6)

and (2.7), respectively.
The method (2.8) is a (formally) first-order splitting integrator known as Lie–Trotter splitting.

Its symmetric and (formally) second-order variant, the Strang splitting, reads

ψKn+1 = φ
τ/2
linear ◦ φ

τ
nonlinear ◦ φ

τ/2
linear

(
ψKn
)
, ψK0 = IK

(
ψ(·, 0)

)
.
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All results that are described in the following for the Lie–Trotter splitting (2.8) extend to this
method. The methods are known as split-step Fourier methods.

Computational cost. One time step of the method (2.8) consists of computing the flows φτlinear
and φτnonlinear of the linear and the nonlinear equation in (2.5). As we have seen above, the flow
φτlinear can be computed via (2.6) in Fourier space with a computational cost of order Kd, and the
flow φτnonlinear can be computed via (2.7) in the discrete points (2.3) with the same computational
cost. The main computational cost comes from the need to switch between Fourier coefficients
and function values in discrete points and vice versa. For such a discrete Fourier transform, the
fast Fourier transform provides an efficient tool with computational cost of order Kd logKd.

Discretization error. An error analysis on finite time intervals of the split-step Fourier method
has been given by Lubich (2008), Thalhammer (2012), Eilinghoff, Schnaubelt & Schratz (2016)
and, in the case of small initial values, Chartier, Méhats, Thalhammer & Zhang (2016). See also
Gauckler (2011), Shen & Wang (2013) and Hofstätter, Koch & Thalhammer (2014), where the
Strang splitting in time is analyzed when combined with spectral collocation methods on the full
space Rd, and Koch & Lubich (2011) and Koch, Neuhauser & Thalhammer (2013), where splitting
integrators for other nonlinear Schrödinger equations are analyzed.

Symplecticity. As we have seen in Section 2.1, the nonlinear Schrödinger equation (2.1) is a
Hamiltonian partial differential equation with Hamiltonian function H given by (2.2). The spatial
semi-discretization (2.4) inherits this Hamiltonian structure. In fact, with the same argument as
in Section 2.1, the spatial semi-discretization (2.4) can be seen to be a Hamiltonian differential
equation with Hamiltonian function

HK
(
ψK
)

=
1

(2π)d

∫
Td

(∣∣∇ψK∣∣2 + 1
2λ I

K
(∣∣ψK∣∣4))dx

on the space VK of trigonometric polynomials of degree K.
Similarly, the two split equations of (2.5) can be seen to be Hamiltonian differential equations

corresponding to the Hamiltonian functions containing only the quadratic part

HK
quadratic

(
ψK
)

=
1

(2π)d

∫
Td

∣∣∇ψK∣∣2 dx

and only the quartic part

HK
quartic

(
ψK
)

=
λ

2(2π)d

∫
Td
IK
(∣∣ψK∣∣4) dx

of HK . The split-step Fourier method (2.8) is thus a composition of flows of Hamiltonian
differential equations. As the flows of Hamiltonian differential equations are symplectic maps, and
as the composition of symplectic maps is again a symplectic map, the split-step Fourier method
is a symplectic numerical method.

Outline. In the remainder of this chapter, we are interested in the long-time behaviour of the
split-step Fourier method (2.8). Does the symplecticity of the method yield a good long-time
behaviour, in a similar way as it is known for symplectic methods applied to Hamiltonian ordinary
differential equations, in spite of the high oscillations introduced by the Laplacian with eigenvalues
(frequencies) |j|2, j ∈ K, and the size of the system?

In Section 2.3, the ability of the method to reproduce the conservation of energy on long time
intervals is studied. Sections 2.4 and 2.5 are concerned with the stability of special solutions to
the nonlinear Schrödinger equation, first for the exact solution (Section 2.4) and then for the
numerical solution by the split-step Fourier method (Section 2.5).
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2.3 Long-time energy conservation for the split-step Fourier
method

One of the most fundamental long-time properties of Hamiltonian differential equations such as the
nonlinear Schrödinger equation (2.1) is the exact conservation of the energy H (the Hamiltonian
function, see (2.2)) along solutions ψ = ψ(x, t) to (2.1):

H
(
ψ(·, t)

)
= H

(
ψ(·, 0)

)
for all times t ≥ 0.

The ability of the split-step Fourier method of Section 2.2 to nearly conserve the energy on long
time intervals is investigated in the article Gauckler (2016a), which is included in this thesis as
Appendix A.

The main result of Gauckler (2016a) (see also Gauckler (2016c)) is the following theorem which
states long-time near-conservation of the energy under the following assumptions.

• The spatial dimension d is 1.

• The initial value is small in the Sobolev space H1 = H1(T,C),∥∥ψK0 ∥∥H1 ≤ ε� 1. (2.9)

• The time step-size τ (and the spatial discretization parameter K) satisfy, for some 0 ≤ µ ≤ 1
2

and 0 < ν ≤ 1 and with ε as in (2.9), the non-resonance condition

|1− ei(k−j
2)τ |

τ
≥ cε2µ max

(
|k|+ 1

|j|2 + 1
, 1

)ν
(2.10)

for all j ∈ K and all integers k 6= j2 with |k| ≤ NK2. This excludes resonant or near-
resonant time step-sizes τ for which certain integer multiples are identical to or close
to integer multiples of 2π. The behaviour of the method for resonant time step-sizes is
illustrated in Section 3 of Gauckler (2016a), see Appendix A.

• The discretization parameters τ and K satisfy the condition

ε2τK6ν ≤ c (2.11)

with ε as in (2.9) and ν as in (2.10).

Theorem (Theorem 3.1 and Corollary 3.2 of Gauckler (2016a), see Appendix A). Let N ≥ 3,
and assume that the initial value ψK0 , the time step-size τ and the spatial discretization parameter
K satisfy the above assumptions. Then, for sufficiently small ε ≤ ε0 in (2.9), the numerical
solution (2.8) nearly preserves the energy on a long time interval:∣∣H(ψKn )−H(ψK0 )∣∣ ≤ Cε3−µ for 0 ≤ tn = nh ≤ ε−2−(N−3)(1−µ).

The constants C and ε0 depend on N , c, µ and ν from the above assumptions, but they are
independent of the size ε of the initial value, the time step-size τ and the spatial discretization
parameter K.

We emphasize that the constants in the theorem are uniform in the discretization parameters
and in the frequencies |j|2, j ∈ K.
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Note that, in the considered situation of initial values of size ε, the energy H of (2.2) is of
size ε2, at least initially. The above theorem states that the accordingly rescaled energy ε−2H is
still conserved up to O(ε1−µ) on a long time interval. The length of this long time interval scales
polynomially in ε−1. The non-resonance condition (2.10) becomes stronger the larger the degree
of this polynomial is.

Related results and techniques of proof. The near-conservation of energy on long time
intervals by symplectic numerical methods applied to the nonlinear Schrödinger equation is one of
the few problems in geometric numerical integration of Hamiltonian partial differential equations,
where several results have already been obtained in the past years.

The first results by Gauckler & Lubich (2010b) and by Faou, Grébert & Paturel (2010a,b) date
back to 2010. In these articles, long-time near-conservation of energy is proven for the split-step
Fourier method applied to a modified nonlinear Schrödinger equation

i∂tψ = −∆ψ + V ∗ ψ + λ|ψ|2ψ.

In fact, long-time near-conservation of energy is obtained there as a corollary to a much stronger
statement on long-time regularity of numerical solutions. The considered modified nonlinear
Schrödinger equation has an additional convolution-type potential that removes resonances in the
equation in the sense that the eigenvalues (frequencies) of the modified linear part −∆ + V ∗ of
the equation are not anymore resonant. Besides a control of resonances and also near-resonances
in the equation itself, the results of Gauckler & Lubich (2010b) and Faou, Grébert & Paturel
(2010a,b) require a numerical non-resonance condition on the time step-size τ , which is similar to
the one used in the above theorem. In addition, they require that the initial values are not only
small in H1, but in a high-order Sobolev space Hs with s� 1. In contrast to the above theorem,
however, they are not restricted to the one-dimensional case. They have been extended to a class
of exponential integrators by Cohen & Gauckler (2012).

These first results have been obtained with Birkhoff normal form techniques (in Faou, Grébert
& Paturel (2010a,b)) and with the technique of modulated Fourier expansions (in Gauckler &
Lubich (2010b) and Cohen & Gauckler (2012)). The latter technique is also used to prove the
above theorem of Gauckler (2016a), but now in a situation where the eigenvalues (frequencies) of
the linear part of the equation are completely resonant, which requires a new completely resonant
modulated Fourier expansion (see also Gauckler, Hairer & Lubich (2016)).

Further results on long-time near-conservation of energy by the split-step Fourier method
for the nonlinear Schrödinger equation have been obtained by Faou & Grébert (2011) and by
Faou (2012). They develop for that purpose a careful adaption of the backward error analysis
familiar from the finite-dimensional case of Hamiltonian ordinary differential equations. In their
results, near-conservation of energy on a time interval of length τ−(N−1)/2 is obtained for small
initial values in H1 under a CFL-type restriction on the discretization parameters of the form
(N + 1)τK2 < 4π. Instead of assuming small initial values, these results also hold under the
assumption that the numerical solution stays sufficiently regular, which is not clear a priori. Such
a regularity assumption on the numerical solution is also needed in Wulff & Oliver (2016) to obtain
long-time near-conservation of energy for symplectic Runge–Kutta methods from the backward
error analysis described there.

In contrast to these previous results on long-time near-conservation of energy by the split-step
Fourier method (or other methods), the above theorem of Gauckler (2016a) neither assumes an
additional convolution-type potential in the equation, nor assumes very regular initial values,
nor assumes any regularity of the numerical solution, nor assumes a CFL-type restriction of
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the form (N + 1)τK2 = O(1) on the discretization parameters. Instead, the usual nonlinear
Schrödinger equation (2.1) is considered with completely resonant frequencies stemming from −∆

on T, with small initial values in H1 as in Faou & Grébert (2011) and Faou (2012), with a very
weak restriction (2.11) on the discretization parameters and with a non-resonance condition on
the time step-size that is automatically fulfilled under the CFL-type step-size restriction of Faou
& Grébert (2011) and Faou (2012), see Section 4 of Gauckler (2016a). It will be interesting to see
whether the remaining restrictions on the spatial dimension and on the size of the initial value
can be removed in future work.

2.4 Stability of plane wave solutions

In this section, the article Faou, Gauckler & Lubich (2013) is described, which is included in this
thesis as Appendix B. In this article, a long-time property of the exact solution of the nonlinear
Schrödinger equation (2.1) is proven. The correct reproduction of this property by the split-step
Fourier method of Section 2.2 is then investigated in the following section.

Plane wave solutions. The nonlinear Schrödinger equation (2.1) has special solutions in the
form of plane waves: for ρ ∈ C and m ∈ Zd, the plane wave

ψ(x, t) = ρei(m·x)e−iωt

is a solution to (2.1) for
ω = |m|2 + λ|ρ|2.

Recall that |·| denotes the Euclidean norm and · the Euclidean scalar product.
The long-time stability of these plane wave solutions under small perturbations of the initial

value is the topic of the article Faou, Gauckler & Lubich (2013). The question as to whether special
solutions such as plane wave solutions are stable under perturbations is a standard question from
a mathematical point of view. But the very question about the stability of plane wave solutions in
the nonlinear Schrödinger equation also arises in applications from nonlinear optics, see Section 5.1
of Agrawal (2013).

Linear stability. A first step in a stability analysis of plane wave solutions is the study of the
linearization of the nonlinear Schrödinger equation (2.1) around a plane wave solution. With the
ansatz

ψ(x, t) =
(
1 + η(x, t)

)
ρei(m·x)e−iωt, |η| � 1, (2.12)

we get from the nonlinear Schrödinger equation (2.1) and the definition of ω the equation

i∂tη = −∆η − 2i(∇η ·m) + λ|ρ|2
(
|1 + η|2 − 1

)
(1 + η)

for the perturbation η. We then linearize this equation. Writing the perturbation η as a spatial
Fourier series η(x, t) =

∑
j∈Zd η̂j(t)e

i(j·x), this yields the system

i
d

dt
η̂j =

(
|j|2 + 2(j ·m) + λ|ρ|2

)
η̂j + λ|ρ|2η̂−j , j ∈ Zd,

for the Fourier coefficients η̂j(t). Taking the equation for η̂j together with the complex conjugate
of the equation for η̂−j finally yields the closed systems

i
d

dt

(
η̂j
η̂−j

)
=

(
|j|2 + 2(j ·m) + λ|ρ|2 λ|ρ|2

−λ|ρ|2 −|j|2 + 2(j ·m)− λ|ρ|2

)(
η̂j
η̂−j

)
, j ∈ Zd.
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To study the stability of this linearization, we compute the eigenvalues of the matrices in these
linear 2× 2-systems. They are given by

2(j ·m)± |j|
√
|j|2 + 2λ|ρ|2, j ∈ Zd. (2.13)

The linearization of the nonlinear Schrödinger equation around a plane wave is stable if and only
if all these eigenvalues are real, which is equivalent to the condition

1 + 2λ|ρ|2 ≥ 0. (2.14)

This linear stability analysis and the resulting criterion (2.14) for linear stability have been known
for a long time, see Bespalov & Talanov (1966) and Benjamin & Feir (1967). The possible
instability is known as Benjamin–Feir instability or modulational instability.

Long-time orbital stability. The presented classical linear stability analysis can, by its very
nature, only give information on short time intervals. Stability on longer time intervals is the
topic of the article Faou, Gauckler & Lubich (2013) of Appendix B.

On longer time intervals, solutions to perturbed initial values cannot be expected to stay close
to the unperturbed plane wave solution itself. What is proven in Faou, Gauckler & Lubich (2013),
however, is that solutions to perturbed initial values stay, on long time intervals, close to the orbit{

ρei(m·x)eiϕ : ϕ ∈ R
}

of the unperturbed plane wave solution ρei(m·x)e−iωt. This orbital stability of plane wave solutions
is true on long time intervals that scale polynomially in the inverse of the size of the perturbation.

More precisely, the main result of Faou, Gauckler & Lubich (2013) is the following theorem.
Here we assume, without loss of generality, that 1 + η(·, 0) in (2.12) is of unit L2-norm, and hence
‖ψ(·, 0)‖L2 = |ρ|. In addition, we denote here and in the following by ‖·‖Hs the Sobolev norm on
the Sobolev space Hs = Hs(Td,C) and by ψ̂j(t) the jth Fourier coefficient of the solution

ψ(x, t) =
∑
j∈Zd

ψ̂j(t)e
i(j·x)

to the nonlinear Schrödinger equation (2.1).

Theorem (Theorem 1.1 and equation (1.3) of Faou, Gauckler & Lubich (2013), see Appendix B).
Let ρ0 > 0 be such that 1 + 2λρ20 > 0, and let N > 1 be fixed arbitrarily. There exist s0 > 0, C ≥ 1

and a set P of full measure in the interval (0, ρ0] such that for every s ≥ s0 and every |ρ| ∈ P,
there exists ε0 > 0 such that for every m ∈ Zd the following holds: if the initial data ψ(·, 0) are
such that

‖ψ(·, 0)‖L2 = |ρ| and
∥∥e−i(m·•)ψ(·, 0)− ψ̂m(0)

∥∥
Hs

= ε ≤ ε0,

then the solution of (2.1) with these initial data satisfies∥∥e−i(m·•)ψ(·, t)− ψ̂m(t)
∥∥
Hs
≤ Cε for 0 ≤ t ≤ ε−N

and
inf
ϕ∈R

∥∥e−i(m·•)ψ(·, t)− ρeiϕ
∥∥
Hs
≤ Cε for 0 ≤ t ≤ ε−N .

Related results and techniques of proof. There are several other articles where stability of
plane wave solutions to the nonlinear Schrödinger equation is investigated. Besides the classical
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results on linear stability mentioned above, it is known that the above orbital stability holds for
all times in the Sobolev space H1, see Zhidkov (2001) and Gallay & Hărăguş (2007a,b), where
also other periodic waves are considered. For perturbations in lower order spaces Hs, s < 1, some
kind of instability of plane waves under certain perturbations has been established by Hani (2011,
2014).

In contrast to these previous results, the result from Faou, Gauckler & Lubich (2013) described
above deals with perturbations in high-order Sobolev spaces Hs with large s and studies the
behaviour of the corresponding high-order Sobolev norms along solutions. The behaviour of
high-order Sobolev norms along solutions has recently attracted a lot of interest. This interest
comes from the fact that a growth of higher Sobolev norms is related to a transfer of energy to
smaller and smaller scales along solutions (weak turbulence). In particular, Bourgain asked in
Bourgain (2000) whether higher Sobolev norms grow along solutions and tend to infinity as time
goes to infinity. Recently, there are several articles that study this problem and establish a certain
growth for certain initial values, see Colliander, Keel, Staffilani, Takaoka & Tao (2010), Guardia
(2014), Guardia & Kaloshin (2015), Haus & Procesi (2015). In this direction, the theorem of Faou,
Gauckler & Lubich (2013) described above shows that there is essentially no growth of higher
Sobolev norms on long time intervals for initial values close to plane waves. It has been extended
recently by Wilson (2015) to nonlinear Schrödinger equations with polynomial nonlinearities of
the form λ|ψ|2pψ with integers p ≥ 2.

From a technical point of view, the article Faou, Gauckler & Lubich (2013) is related to a
series of results on nonlinear perturbations of linear Hamiltonian partial differential equations with
non-resonant frequencies, see Bambusi (2003), Bambusi & Grébert (2006), Grébert (2007), Cohen,
Hairer & Lubich (2008b), Gauckler & Lubich (2010a) and Gauckler (2010). At first glance, this is
a different situation, because the linear part −∆ of the nonlinear Schrödinger equation (2.1) has
completely resonant eigenvalues (frequencies) |j|2, j ∈ Z, and, near plane waves, the nonlinearity
cannot be considered as a small perturbation. A crucial step in the proof of the above theorem
is then to show that it is possible to write the nonlinear Schrödinger equation (2.1) near plane
waves as a Hamiltonian perturbation of a linear Hamiltonian system with frequencies that are non-
resonant (in a certain sense). After this transformation, the tools and results of Bambusi (2003),
Bambusi & Grébert (2006) and Grébert (2007) obtained with the technique of Birkhoff normal
forms or, alternatively, the tools and results of Cohen, Hairer & Lubich (2008b), Gauckler &
Lubich (2010a) and Gauckler (2010) obtained with the technique of modulated Fourier expansions
can be applied to obtain the statement of the above theorem.

On the assumptions of the theorem. Recall that the linearization around a plane wave
solution is stable if and only if 1 + 2λ|ρ|2 ≥ 0, see (2.14). The condition 1 + 2λρ20 > 0 in the above
theorem is thus essentially the requirement that this linearization is stable.

To go beyond this linear stability analysis and to cover longer intervals, further assumptions
are needed in the above theorem. It is assumed there that the order s of the considered Sobolev
space is large and that some values of |ρ| = ‖ψ(·, 0)‖L2 are excluded. These conditions are related
to the control of certain resonances that might become relevant on longer time intervals. More
precisely, these conditions allow us to control and to exclude to some extent resonances among
the eigenvalues (frequencies) (2.13) that show up in the linearization around a pane wave. For
a precise formulation of the required non-resonance condition, we refer to Lemma 2.2 of Faou,
Gauckler & Lubich (2013), see Appendix B. The above theorem can thus be summarized as

linear stability & control of resonances =⇒ long-time orbital stability.



Chapter 2. Geometric numerical integration of NLS 13

2.5 Stability of plane wave solutions in the split-step Fourier
method

In the article Faou, Gauckler & Lubich (2014), which is included in this thesis as Appendix C, the
question is studied whether the split-step Fourier method of Section 2.2 is able to reproduce the
stable behaviour of the exact solution near plane waves as described in the previous Section 2.4.

The question is in particular, whether the stability on long time intervals can be reproduced
by this symplectic method in a qualitatively correct way. Stability on short times by means of
a linear stability analysis following the procedure outlined in Section 2.4 (but now on a discrete
level for the numerical method) has been investigated for the split-step Fourier method and also
other methods already by Weideman & Herbst (1986) and more recently by Dahlby & Owren
(2009), Khanamiryan, Nevanlinna & Vesanen (2012), Lakoba (2013) and Cano & González-Pachón
(2016).

The main result of Faou, Gauckler & Lubich (2014) states that the split-step Fourier method
is in fact able to reproduce the orbital stability of plane wave solutions even on long time intervals.
Instead of reproducing here this main result in all details, we refer to Section 2.2 of the original
article Faou, Gauckler & Lubich (2014) included in Appendix C and only state it vaguely as

linear stability & control of resonances =⇒ long-time orbital stability.

This is, in fact, the same kind of result as for the exact solution, see the discussion of Section 2.4.
However, “linear stability” now means that the linearization of the numerical method (and not
the equation itself) has to be stable. Accordingly, the “control of resonances” requires a control
of resonances among the frequencies that show up in the linearization of the numerical method
(and not of the equation itself). A sufficient, though not necessary, condition under which these
assumptions are fulfilled is stated in Theorem 3 of Faou, Gauckler & Lubich (2014) in Appendix C.
In addition to the assumptions needed for orbital stability of the exact solution (see Section 2.4),
its main ingredient is a CFL-type step-size restriction of the form

(N + 1)dτK2 = O(1),

if the considered long time interval is supposed to be max(ε1/2, τ)N . Here, ε is again the size of
the perturbation, τ the time step-size and K the spatial discretization parameter. Under these
assumptions, the split-step Fourier method (2.8) reproduces the orbital stability of plane waves
in the nonlinear Schrödinger equation (2.1) even on long time intervals. A related result on
orbital stability of ground states of the nonlinear Schrödinger equation on R after a numerical
discretization has been proven by Bambusi, Faou & Grébert (2013) on the basis of the backward
error analysis of Faou & Grébert (2011) and Faou (2012).



Chapter 3

Geometric numerical integration of
nonlinear wave equations

In this chapter, some results on the geometric numerical integration of nonlinear wave equations
are described.

Wave equations are fundamental equations for the description of the propagation of waves. The
propagation of nonlinear waves, for which, in particular, the superposition principle does not hold,
is described by nonlinear equations. There are many different equations for such nonlinear wave
phenomena, see, e.g., the monograph by Whitham (1974). The nonlinear Schrödinger equation of
the previous chapter is actually one of them. In this chapter, we focus on a particular nonlinear
wave equation that is a direct nonlinear extension of the linear wave equation ∂2t u = ∂2xu or the
linear Klein–Gordon equation ∂2t u = ∂2xu− ρu with ρ > 0. For some physical background on the
considered equation, we refer to Section 14.1 of Whitham (1974). As the nonlinear Schrödinger
equation of the previous chapter, the considered nonlinear wave equation is a Hamiltonian partial
differential equation. Typical symplectic methods for the equation are trigonometric integrators.

This chapter is organized as follows. In Section 3.1, the considered nonlinear wave equation is
introduced. In Section 3.2, trigonometric integrators for the discretization in time are described as
well as their combination with a Fourier collocation method in space. The remaining sections are
then concerned with the long-time behaviour of the exact solution and the long-time behaviour of
these methods, and also with finite-time error bounds. In these Sections 3.3, 3.4, 3.5 and 3.6, the
results of the articles Gauckler, Hairer, Lubich & Weiss (2012), Gauckler & Weiss (2016), Gauckler
(2015) and Gauckler (2016b) are described, which are included in this thesis as Appendices D, E,
F and G, respectively.

3.1 The nonlinear wave equation

We consider the one-dimensional nonlinear wave equation (NLW) with quadratic nonlinearity,
which is the time-dependent partial differential equation

∂2t u = ∂2xu− ρu+ u2, u = u(x, t) ∈ R, (3.1)

where t ≥ 0 denotes time and x ∈ R denotes space. We consider this equation with a positive
parameter ρ. The equation is then also known as nonlinear Klein–Gordon equation. Throughout
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this chapter, we write
v = ∂tu

and consider the equation in first-order form

∂tu = v,

∂tv = ∂2xu− ρu+ u2.
(3.2)

As the nonlinear Schrödinger equation of Chapter 2, this equation is an example of a Hamilto-
nian partial differential equation. On the one hand, sharing this property and others such as its
semilinearity with the nonlinear Schrödinger equation of Chapter 2, makes both equations and the
expected behaviour of solutions similar. On the other hand, there are considerable differences that
often require a separate treatment. This latter case is the situation in many of the monographs
on nonlinear Schrödinger equations mentioned in Chapter 2, where also nonlinear wave equations
are considered with all their similarities and differences. We follow this style here in this separate
chapter on the nonlinear wave equation (3.1).

Boundary conditions. As the nonlinear Schrödinger equation of Chapter 2, we consider the
nonlinear wave equation (3.2) with 2π-periodic boundary conditions in space, that is, on the
one-dimensional torus T = R/(2πZ).

Hamiltonian structure. The nonlinear wave equation (3.2) is a Hamiltonian partial differential
equation with Hamiltonian function (total energy)

H(u, v) =
1

2π

∫
T

(
1
2 |v|

2 + 1
2 |∂xu|

2 + 1
2ρ|u|

2 − 1
3u

3
)

dx, (3.3)

defined for functions u and v in the Sobolev space H1 = H1(T,R) of real-valued functions on the
torus T. In fact, with this Hamiltonian function and with the definition of the gradient of H from
Section 2.1, we have

∂tu = ∇vH(u, v),

∂tv = −∇uH(u, v)

for the nonlinear wave equation in first-order form (3.2). As in the case of the nonlinear Schrödinger
equation of Section 2.1, this is a Hamiltonian differential equation on an infinite-dimensional state
space.

For later purposes, we consider the Hamiltonian function H also in Fourier space. We denote
by ûj and v̂j , j ∈ Z, the Fourier coefficients of u(x) =

∑
j∈Z ûje

ijx and v(x) =
∑
j∈Z v̂je

ijx. The
Hamiltonian function H can then be written as

H(u, v) =
1

2

∑
j∈Z

(
|v̂j |2 + ω2

j |ûj |2
)
− 1

6π

∫
T
u3 dx,

where
ωj =

√
j2 + ρ, j ∈ Z, (3.4)

are the frequencies of the nonlinear wave equation (3.2). The individual summands of the quadratic
part ofH in this form are the energies associated to individual Fourier modes. Thesemode energies

Ej(u, v) = 1
2 |v̂j |

2 + 1
2ω

2
j |ûj |2, j ∈ Z, (3.5)

will be studied in more detail below. Note that Ej = E−j as ûj = û−j and v̂j = v̂−j for real-valued
u and v.
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3.2 Trigonometric integrators

Trigonometric integrators are exponential integrators for second-order differential equations, which
appear in classical mechanics and molecular dynamics, but also as spatial semi-discretizations of
nonlinear wave equations (3.1). Various instances of these methods have been introduced and
analyzed, e.g., by García-Archilla, Sanz-Serna & Skeel (1999), Hochbruck & Lubich (1999), Hairer
& Lubich (2000), Grimm (2005), Hairer, Lubich & Wanner (2006), Grimm & Hochbruck (2006)
and Hochbruck & Ostermann (2010).

Discretization in space. For the discretization in space of (3.1), we use a Fourier collocation
method as for the nonlinear Schrödinger equation in Section 2.2. We denote again by

VK =

{∑
j∈K

v̂je
ijx : v̂j ∈ C

}
, K =

{
−K, . . . ,K − 1

}
,

the ansatz space of trigonometric polynomials of degree K, and we use again a collocation based
on this ansatz space and the collocation points xk = kπ/K, k ∈ K, of Section 2.2. This yields the
spatially discrete and finite system of equations

∂2t u
K(xk, t) =

(
∂2xu

K
)
(xk, t)− ρuK(xk, t) +

(
uK(xk, t)

)2
, k ∈ K,

for the approximation
uK(x, t) =

∑
j∈K

ûKj (t)eijx ≈ u(x, t)

from VK . With the trigonometric interpolation IK , we can rewrite this system as an equation
for the time-dependent trigonometric polynomial uK = uK(x, t):

∂2t u
K = ∂2xu

K − ρuK + IK
(
(uK)2

)
. (3.6)

In the following, we write

g
(
uK
)

= IK
(
(uK)2

)
and − Ω2 = ∂2x − ρ,

i.e., Ω denotes the operator that multiplies the jth Fourier coefficient of its argument with the
frequency ωj =

√
j2 + ρ of (3.4). The spatial semi-discretization (3.6) in first-order form then

takes the form

∂tu
K = vK ,

∂tv
K = −Ω2uK + g

(
uK
)
.

(3.7)

Discretization in time. Trigonometric integrators are exponential integrators and, as such,
they are based on a discretization of the variation-of-constants formula(

uK(·, t)
vK(·, t)

)
= R(t− t0)

(
uK(·, t0)

vK(·, t0)

)
+

∫ t

t0

R(t− σ)

(
0

g
(
uK(·, σ)

)) dσ

for the system (3.7), where

R(t) =

(
cos(tΩ) t sinc(tΩ)

−Ω sin(tΩ) cos(tΩ)

)
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denotes the flow of the linear problem ∂tu
K = vK , ∂tvK = −Ω2uK . Using the trapezoidal rule to

discretize the integral in the variation-of-constants formula yields, with the time step-size τ , the
basic trigonometric integrator(

uKn+1

vKn+1

)
= R(τ)

(
uKn
vKn

)
+
τ

2

(
τ sinc(τΩ)g

(
uKn
)

cos(τΩ)g
(
uKn
)

+ g
(
uKn+1

)) . (3.8)

This basic trigonometric integrator computes approximations

uKn ≈ uK(·, tn) and vKn ≈ vK(·, tn) = ∂tu
K(·, tn)

at discrete times tn = nτ , n = 1, 2, . . .. Note that the method is explicit because uKn+1 on the
right-hand side only appears in the equation for vKn+1. The method was introduced by Deuflhard
(1979) and by Grubmüller, Heller, Windemuth & Schulten (1991), Tuckerman, Berne & Martyna
(1992). It is known as method of Deuflhard or impulse method. Initial values for (3.8) are
computed by trigonometric interpolation,

uK0 ≈ IK
(
uK(·, 0)

)
and vK0 ≈ IK

(
vK(·, 0)

)
.

Extensions of the above basic trigonometric integrator use filters in the nonlinearity to deal
with certain resonant situations. The first such extension is due to García-Archilla, Sanz-Serna &
Skeel (1999). The general class of trigonometric integrators considered in the literature takes the
form (

uKn+1

vKn+1

)
= R(τ)

(
uKn
vKn

)
+
τ

2

(
τΨg

(
ΦuKn

)
Ψ0g

(
ΦuKn

)
+ Ψ1g

(
ΦuKn+1

)) , (3.9)

where
Ψ = ψ(τΩ), Φ = φ(τΩ), Ψ0 = ψ0(τΩ), Ψ1 = ψ1(τΩ)

are filters computed from real-valued and even filter functions ψ, φ, ψ0 and ψ1. The filter functions
ψ0 and ψ1 are typically chosen as

ψ0 = cos ·ψ1 and ψ1 = sinc−1 ·ψ, (3.10)

which is equivalent to the symmetry of the trigonometric integrator (3.9), see equation (2.9) in
Chapter XIII of Hairer, Lubich & Wanner (2006). Popular choices for the remaining free filter
functions ψ and φ are then

(a) ψ = sinc and φ = 1, see Deuflhard (1979) and Grubmüller, Heller, Windemuth & Schulten
(1991), Tuckerman, Berne & Martyna (1992) (this is the basic trigonometric integrator (3.8)
above),

(b) ψ = sinc2 and φ = sinc, see García-Archilla, Sanz-Serna & Skeel (1999) (this method is
known as mollified impulse method),

(c) ψ = sinc2 and φ = 1, see Hairer & Lubich (2000),

(d) ψ = sinc3 and φ = sinc, see Grimm & Hochbruck (2006),

(e) ψ = sinc( 1
2 ·) and φ = 1, see Gautschi (1961),

(f) ψ = sinc( 1
2 ·) and φ = sinc ·

(
1 + 1

3 sin( 1
2 ·)

2
)
, see Hochbruck & Lubich (1999).
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While trigonometric integrators (3.9) were originally derived for highly oscillatory second-order
ordinary differential equations from classical mechanics and molecular dynamics, they are now
also used extensively for nonlinear wave equations like (3.2), see, e.g., Grimm (2006), Cohen,
Hairer & Lubich (2008a), Bao & Dong (2012), Cano (2013), Dong (2014) and Gauckler (2015).
They have been extended to higher order by Cano & Moreta (2010, 2013) and to stochastic wave
equations by Cohen, Larsson & Sigg (2013), Cohen & Quer-Sardanyons (2016) and Anton, Cohen,
Larsson & Wang (2016).

Computational cost. As for the split-step Fourier method of Section 2.2, the main computa-
tional cost of a trigonometric integrator (3.9) is to switch between the Fourier coefficients (in
which the multiplication with the filters and with R is computed) and the values in the collocation
points (in which the nonlinearity is computed). The computational cost per time step is thus
proportional to the cost of a discrete Fourier transform.

Symplecticity. In order to study the symplecticity of trigonometric integrators (3.9), we interpret
them as splitting integrators applied to an averaged equation. This interpretation is at the basis
of the derivation of the mollified impulse method of García-Archilla, Sanz-Serna & Skeel (1999)
and has been used very recently by Buchholz, Gauckler, Grimm, Hochbruck & Jahnke (2016) to
prove error bounds.

More precisely, we use filters Φ = φ(τΩ) and Ψ1 = ψ1(τΩ) and consider the averaged version

∂tu
K = vK ,

∂tv
K = −Ω2uK + Ψ1g

(
ΦuK

) (3.11)

of the spatial semi-discretization (3.7). This averaged version is then split into

∂tu
K = 0,

∂tv
K = Ψ1g

(
ΦuK

) and
∂tu

K = vK ,

∂tv
K = −Ω2uK .

(3.12)

Both of these split equations are easy to solve, and the corresponding Strang splitting (solving
first the first equation of (3.12) over a time interval 1

2τ , then the second one over a time interval
τ and finally again the first one over a time interval 1

2τ) reads

vKn,+ = vKn + 1
2τΨ1g

(
ΦuKn

)
,(

uKn+1

vKn+1,−

)
= R(τ)

(
uKn
vKn,+

)
,

vKn+1 = vKn+1,− + 1
2τΨ1g

(
ΦuKn+1

)
.

Eliminating the intermediate variables vKn,+ and vKn+1,−, this Strang splitting is seen to be equiv-
alent to the trigonometric integrator (3.9) with filter functions satisfying the symmetry condi-
tion (3.10). In other words, symmetric trigonometric integrators are a Strang splitting applied to
averaged versions of the equation. This interpretation is now used to study their symplecticity in
a similar way as it has been done in Section 2.2 for the split-step Fourier method.

If the filter functions satisfy the symmetry condition (3.10) and in addition the condition

ψ = sinc ·φ, (3.13)

then we have ψ1 = φ. The above averaged equation (3.11) is then a Hamiltonian differential
equation with Hamiltonian function

HK
(
uK , vK

)
=

1

2π

∫
T

(
1
2

∣∣vK∣∣2 + 1
2

∣∣∂xuK∣∣2 + 1
2ρ
∣∣uK∣∣2 − 1

3I
K
(
(ΦuK)3

))
dx
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on the space VK of trigonometric polynomials of degree K. Similarly, the split equations of (3.12)
are in this case Hamiltonian differential equations with Hamiltonian functions

HK
cubic

(
uK , vK

)
= − 1

6π

∫
T
IK
(
(ΦuK)3

)
dx

and
HK

quadratic
(
uK , vK

)
=

1

2π

∫
T

(
1
2

∣∣vK∣∣2 + 1
2

∣∣∂xuK∣∣2 + 1
2ρ
∣∣uK∣∣2) dx.

Under the conditions (3.10) and (3.13), the trigonometric integrator (3.9) is thus a composition
of flows of Hamiltonian differential equations, and hence a symplectic method.

Outline. In the remainder of this chapter, we are interested in the long-time behaviour of
solutions to the nonlinear wave equation (3.2) and of trigonometric integrators (3.9), but also in
finite-time error bounds for such methods.

In Section 3.3, a long-time property of exact solutions to the nonlinear wave equation (3.2)
is described. Its correct reproduction by symplectic trigonometric integrators is then discussed
in Section 3.4. The final Sections 3.5 and 3.6 are concerned with finite-time error bounds for
trigonometric integrators (3.9) applied to (3.2) and for a related class of methods applied to the
Zakharov system, a wave equation that is nonlinearly coupled to a Schrödinger equation.

3.3 Metastable energy strata

In this section, the article Gauckler, Hairer, Lubich & Weiss (2012) is described, which is included
in this thesis as Appendix D. The topic of this article is a long-time property of the exact solution
of the nonlinear wave equation (3.2).

Energy strata on a short time interval. In analogy to the plane wave solutions of the
nonlinear Schrödinger equation discussed in Sections 2.4 and 2.5, we consider for the nonlinear
wave equation (3.2) initial values that are located in a single Fourier mode. As we consider
real-valued solutions, this means that u(x, 0) = aeimx + ae−imx and v(x, 0) = beimx + be−imx for
some m ∈ Z and a, b ∈ C. For simplicity, we restrict in the following to the case m = 1, i.e.,

u(x, 0) = aeix + ae−ix and v(x, 0) = beix + be−ix, (3.14a)

but all results can be extended to general m ∈ Z.
For such initial values, the solution to the linear wave equation ∂2t u = ∂2xu − ρu remains in

the first Fourier mode for all times, that is, it remains a linear combination of eix and e−ix for
all times. This, however, is no longer true in the presence of a nonlinear coupling term, as for
example the quadratic nonlinearity u2 considered in (3.2). In fact, the right-hand side of the
nonlinear wave equation (3.2) evaluated at the initial value is then

∂2xu(x, 0)− ρu(x, 0) +
(
u(x, 0)

)2
= 2|a|2 − (1 + ρ)

(
aeix + ae−ix

)
+
(
a2e2ix + a2e−2ix

)
,

which shows that the solution does not remain a linear combination of eix and e−ix. In a weakly
nonlinear regime, in which the initial values (3.14a) are small, i.e.,

|a| ≤ ε� 1, |b| ≤ ε� 1, (3.14b)

this calculation suggests at the same time that the zeroth and second Fourier modes are significantly
smaller than the first one. In fact, the zeroth and the second Fourier modes of the solution are
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Figure 3.1: Expected upper bounds for the mode energies Ej(t) on a short time interval.

expected to be of order ε2, at least on short time intervals, whereas the first mode is of order
ε. Iterating the above computation of the right-hand side of the nonlinear wave equation (3.2)
further suggests that the jth Fourier mode with |j| ≥ 3 is of order ε|j|, again at least on short
time intervals.

For initial values of the form (3.14), we thus expect that the mode energies (3.5) of the
nonlinear wave equation behave like

E0(t) = O
(
ε4
)
, Ej(t) = E−j(t) = O

(
ε2|j|

)
, |j| ≥ 1,

on a short time interval. A schematic description of these energy strata is given in Figure 3.1.

Metastable energy strata on a long time interval. The main result of Gauckler, Hairer,
Lubich & Weiss (2012) states that the described energy strata are in fact stable on a long time
interval. More precisely, it is shown for fixed but arbitrary N ≥ 2 and 0 < θ ≤ 1 that the mode
energies decay as

Ej(t) = E−j(t) = O
(
ε2e(j)

)
, j ∈ Z,

with the energy profile

e(j) =


2, j = 0,

|j|, 0 < |j| ≤ N,
|j|(1− θ) +Nθ, |j| > N,

on a long time interval
0 ≤ t ≤ cε−θN .

This situation is depicted in Figure 3.2 for N = 5 and θ = 1
2 . For a finite number of modes, the

expected decay of the mode energies is thus observed indeed on a long time interval. This time
interval is much longer than the interval on which a standard perturbation analysis is possible.
For the remaining modes, we get a decay that is close to the decay that is expected on a short
time interval.

More precisely, the main result of Gauckler, Hairer, Lubich & Weiss (2012) is the following
theorem.
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Figure 3.2: Upper bounds for the mode energies Ej(t) on a long time interval (for N = 5 and
θ = 1

2 ).

Theorem (Theorem 1 of Gauckler, Hairer, Lubich & Weiss (2012), see Appendix D). Fix an
integer N ≥ 2 and real numbers s > 1

2 and ρ0 > 0. For all except finitely many 0 < ρ < ρ0 the
following holds: There exist δ0 > 0 and positive c and C such that for 0 < θ ≤ 1 the mode energies
of solutions to the nonlinear wave equation (3.2) for initial data (3.14) with 0 < εθ ≤ δ0 satisfy,
over long times

0 ≤ t ≤ cε−θN ,

the bound
∞∑

j=−∞
ε−2e(j)

(
1 + |j|2

)s
Ej(t) ≤ C.

On the assumption of the theorem. In the above theorem, some values of the parameter ρ
in the nonlinear wave equation (3.2) have to be excluded. These are those values of ρ, for which
the frequencies ωj =

√
j2 + ρ of (3.4) are in resonance or almost-resonance. More precisely, the

required non-resonance condition reads∣∣∣∣∣
∞∑
`=0

k`ω`

∣∣∣∣∣ ≥ γ > 0 (3.15)

for all non-zero and finite integer sequences (k0, k1, k2, . . . ) of a special form. The types of
sequences (k0, k1, k2, . . . ) that have to be considered are determined by the interactions of Fourier
modes introduced by the nonlinearity into the dynamics (see Section 3.2 of Gauckler, Hairer,
Lubich & Weiss (2012) in Appendix D for more details). This non-resonance condition can be
shown to be satisfied for all except finitely many values of the parameter ρ in a given interval, see
Theorem 2 of Gauckler, Hairer, Lubich & Weiss (2012).

3.4 Metastable energy strata in trigonometric integrators

The topic of this section is the article Gauckler & Weiss (2016), which is included in this thesis as
Appendix E. In that article, the metastability of energy strata in the nonlinear wave equation (3.2)
from the previous section is studied from a numerical point of view. More precisely, the ability of
some symplectic methods to reproduce these metastable energy strata on a long time interval is
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studied. The considered numerical methods are the trigonometric integrators (3.9) of Section 3.2.
These integrators applied to nonlinear wave equations are known to behave well with respect to
conserved quantities on long time intervals, see Cohen, Hairer & Lubich (2008a), Faou, Grébert
& Paturel (2010a,b), Gauckler (2010), Faou & Grébert (2011) and Cano (2013).

The main result of the article Gauckler & Weiss (2016) states that symplectic trigonometric
integrators indeed reproduce the metastable energy strata of the exact solution on a long time
interval in a qualitatively correct way, uniformly in the discretization parameters. This result holds
under a non-resonance condition. In contrast to the non-resonance condition (3.15) for the exact
solution, this non-resonance condition does not only involve the frequencies ωj =

√
j2 + ρ of (3.4),

but also the time step-size τ of the numerical method (3.9): Instead of bounding certain integer
linear combinations of the frequencies away from zero, this non-resonance condition requires to
bound these integer linear combinations away from integer multiples of 2π/τ with the time step-
size τ . There are thus also numerical resonances that have to be excluded. The bad behaviour of
a trigonometric integrator in such a numerically resonant situation is illustrated in Section 2.4 of
Gauckler & Weiss (2016), see Appendix E.

3.5 Error analysis of trigonometric integrators

In the article Gauckler (2015), which is included in this thesis as Appendix F, an error analysis
of the trigonometric integrators (3.9) applied to the spatial semi-discretization (3.7) of the non-
linear wave equation (3.2) is given. The analysis relies on a regularity assumption on the exact
solution of (3.7) and an assumption on the filter functions φ, ψ, ψ0 and ψ1 of the trigonometric
integrator (3.9).

Regularity assumption. We fix s ≥ 0,M ≥ 1 and T > 0, and we assume that the exact solution
(uK(·, t), vK(·, t)) of the spatial semi-discretization (3.7) of the nonlinear wave equation (3.2)
satisfies ∥∥uK(·, t)

∥∥
Hs+1 +

∥∥vK(·, t)
∥∥
Hs
≤M (3.16)

for 0 ≤ t− t0 ≤ T , uniformly in the spatial discretization parameter K. Here, we denote again by
‖·‖Hs the Sobolev norm on the Sobolev space Hs = Hs(T,R).

This assumption can be shown to hold locally in time if it is satisfied at the initial value. It
can also be shown to hold if it satisfied for the exact solution of the nonlinear wave equation (3.2)
itself.

In the important case s = 0, the above regularity assumption just requires boundedness of
(uK , vK) in H1×H0, which is closely related to a bounded energy (3.3). Previous error bounds for
trigonometric integrators as given, e.g., by García-Archilla, Sanz-Serna & Skeel (1999), Hochbruck
& Lubich (1999), Grimm (2005), Hairer, Lubich & Wanner (2006), Grimm & Hochbruck (2006),
Grimm (2006) or Buchholz, Gauckler, Grimm, Hochbruck & Jahnke (2016) all require this property
of the exact solution.

Assumptions on the filter functions. For the filter functions φ, ψ, ψ0 and ψ1 of the trigono-
metric integrator (3.9), the analysis of Gauckler (2015) requires, for all ξ ≥ 0, the bounds

|χ(ξ)| ≤ c, |1− χ(ξ)| ≤ c ξ2 for χ = φ, ψ0, ψ1,

|ψ(ξ)| ≤ c, |ψ(ξ)| ≤ c ξ−1, |1− ψ(ξ)| ≤ c ξ.
(3.17)

These assumptions are in particular fulfilled for the impulse method/method of Deuflhard, the
mollified impulse method of García-Archilla, Sanz-Serna & Skeel (1999) and the methods of Hairer
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& Lubich (2000) and Grimm & Hochbruck (2006) (methods (a)–(d) of Section 3.2).

Under these assumptions on the exact solution and the filter functions, the main result of
Gauckler (2015) is the following error bound for the time discretization with the trigonometric
integrators (3.9).

Theorem (Theorem 2.1 of Gauckler (2015), see Appendix F). Let s ≥ 0, M ≥ 1 and T > 0,
and assume that the exact solution (uK(·, t), vK(·, t)) of the spatial semi-discretization (3.7) of the
nonlinear wave equation (3.2) satisfies (3.16) for 0 ≤ t− t0 ≤ T . Assume further that the filter
functions φ, ψ, ψ0 and ψ1 of the trigonometric integrator (3.9) satisfy the bounds (3.17) for all
ξ ≥ 0 with a constant c.

Then, there exists τ0 > 0 such that for all time step-sizes τ ≤ τ0 the following global error
bound holds for the numerical solution (uKn , v

K
n ) computed with the trigonometric integrator (3.9):∥∥uK(·, tn)− uKn

∥∥
Hs+1−α +

∥∥vK(·, tn)− vKn
∥∥
Hs−α

≤ Cτ1+α

for 0 ≤ tn − t0 = nh ≤ T and −1 ≤ α ≤ 1. The constants C and τ0 depend only on M and s
from the regularity assumption (3.16), on the final time T and on the constant c from the filter
bounds (3.17).

We emphasize that the constants in the above theorem are uniform in the spatial discretization
parameter K. In particular, the theorem yields

• second-order convergence in the time step-size τ in the space H0 ×H−1 uniformly in K,

• first-order convergence in the time step-size τ in the space H1 ×H0 uniformly in K,

if the exact solution is bounded in H1 ×H0 .

Related results. Error bounds for various trigonometric integrators (3.9) are available in the
literature, see García-Archilla, Sanz-Serna & Skeel (1999), Hochbruck & Lubich (1999), Grimm
(2005), Section XIII.4 of Hairer, Lubich & Wanner (2006), Grimm & Hochbruck (2006), Grimm
(2006) and Buchholz, Gauckler, Grimm, Hochbruck & Jahnke (2016). However, all these results
cannot be applied directly to semilinear wave equations because they would require for example
(with s = 0 in the language of our wave equation (3.2)) that the nonlinearity u2 is bounded in L2

for functions u ∈ L2, which is not true.
In addition, the model problems considered in the literature and the analysis presented there

require significantly stronger assumptions on the filter functions than (3.17) to obtain second-
order error bounds under a finite-energy assumption on the exact solution. In particular, they
require that the filter functions should vanish at integer multiples of 2π, which is, for example,
not the case for the filters of the impulse method/method of Deuflhard. The analysis of Gauckler
(2015) shows that such strong assumptions on the filter functions are not necessary in the case
of semilinear wave equations. In particular, the impulse method/method of Deuflhard works well
for semilinear wave equations, contrary to what was believed before.

3.6 A splitting integrator for the Zakharov system

The Zakharov system

i∂tψ = −∆ψ + uψ,

∂2t u = ∆u+ ∆|ψ|2
(3.18)
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combines the nonlinear Schrödinger equation as considered in Chapter 2 and the nonlinear wave
equation as considered in this chapter. In fact, it is a Schrödinger equation for the complex-valued
function

ψ = ψ(x, t) ∈ C

that is nonlinearly coupled to a wave equation for the real-valued function

u = u(x, t) ∈ R.

It is a model from plasma physics which has been introduced by Zakharov (1972) to describe
the propagation of Langmuir waves. As in the previous sections and chapters, we consider this
equation here with 2π-periodic boundary conditions on Rd, i.e., x ∈ Td = Rd/(2πZd). In addition,
we write again

v = ∂tu.

In the article Gauckler (2016b), which is included in this thesis as Appendix G, an error analysis
is given for one of the standard numerical methods for this equation. The method, introduced by
Jin, Markowich & Zheng (2004) and Jin & Zheng (2006), is a (structure-preserving) Lie–Trotter
splitting integrator in time combined with a Fourier collocation in space similar to the split-step
Fourier method of Section 2.2 and the trigonometric integrators of Section 3.2. We do not give
a precise definition of the method here, but refer to the original articles by Jin, Markowich &
Zheng (2004) and Jin & Zheng (2006) and to Section 2.2 of Gauckler (2016b) in Appendix G. We
denote by ψKn , uKn and vKn the trigonometric polynomials of degree K as computed by the method,
which are supposed to approximate the exact solution ψ(·, tn), u(·, tn) and v(·, tn) = ∂tu(·, tn),
respectively, at time tn = nτ with the time step-size τ .

As in the case of the nonlinear wave equation of the previous section, we require regularity of
the exact solution to prove error bounds. In addition, we now require a CFL-type coupling of the
time step-size τ and the spatial discretization parameter K.

Regularity assumption. We fix s > d
2 , σ ≥ 2, M ≥ 1 and T > 0, and we assume that the exact

solution to the Zakharov system (3.18) satisfies

‖ψ(·, t)‖Hs+2+σ + ‖u(·, t)‖Hs+1+σ + ‖v(·, t)‖Hs+σ ≤M (3.19)

for 0 ≤ t− t0 ≤ T . As before, we denote here again by ‖·‖Hs the Sobolev norm on the Sobolev
spaces Hs = Hs(Td,C) or Hs = Hs(Td,R). This regularity assumption on the exact solution
can be expected to hold locally in time by the well-posedness theory for the Zakharov system, see
Kishimoto (2013) and references therein.

CFL condition. We assume that the time step-size τ and the spatial discretization parameter
K are coupled as

dτK2 ≤ c < 2π, (3.20)

where d is the spatial dimension.

Under these assumptions, the following error bound for the method of Jin, Markowich & Zheng
(2004) and Jin & Zheng (2006) is proven in Gauckler (2016b).

Theorem (Theorem 2.3 of Gauckler (2016b), see Appendix G). Let s > d
2 , σ ≥ 2, M ≥ 1

and T > 0, and assume that the exact solution to the Zakharov system (3.18) satisfies (3.19) for
0 ≤ t−t0 ≤ T . Assume further that the time step-size τ and the spatial discretization parameter K
satisfy the CFL-type step-size restriction (3.20) with constant c.
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Then, the global error of the Lie–Trotter splitting of Jin, Markowich & Zheng (2004) and
Jin & Zheng (2006) with time step-size τ ≤ τ0 and spatial discretization parameter K ≥ K0 is
bounded by∥∥ψ(·, tn)− ψKn

∥∥
Hs+2 +

∥∥u(·, tn)− uKn
∥∥
Hs+1 +

∥∥v(·, tn)− vKn
∥∥
Hs
≤ C

(
τ +K−σ

)
for 0 ≤ tn − t0 = nτ ≤ T . The constants C, K0 and τ0 depend on the dimension d, on M , s and
σ from the regularity assumption (3.19), on the final time T and on the constant c from the CFL
condition (3.20).

The numerical examples of Section 6 of Gauckler (2016b) show that CFL condition (3.20) of the
theorem is necessary. We note, however, that this CFL condition is a natural restriction in view of
the proven spatial and temporal error bound, which suggests to choose τ = O(K−σ) = O(K−2).

Related results and technique of proof. In view of the available error analysis for the split-
step Fourier method for the Schrödinger equation, see Lubich (2008) and Thalhammer (2012),
and for trigonometric integrators for wave equations, see Gauckler (2015) and Section 3.5, the
proof of this theorem might seem to be an easy combination of these results and their proofs.
This, however, is not the case. The reason is the term ∆|ψ|2 in the wave equation of (3.18), which
leads to a loss of spatial derivatives when applying the arguments of the mentioned articles on
Schrödinger and wave equations in a direct way. By a loss of spatial derivatives we mean that a
control of a certain number of spatial derivatives of the numerical solution requires a control of
more spatial derivatives at a previous time step. Such properties, of course, make this approach
to analyze the method failing.

In Gauckler (2016b), a new technique is developed to analyze the splitting method for the
Zakharov system (3.18). It is based on a transformation of the numerical solution to new variables,
in which a loss of spatial derivatives can be excluded and which finally leads to the error bound
of the above theorem. This transformation is a fully discrete analogon of a transformation that
has been introduced by Ozawa & Tsutsumi (1992) to analyze the Zakharov system itself.

The only other methods for the Zakharov system, for which rigorous error bounds have been
proven so far, are, to the best of the author’s knowledge, the methods derived by Herr & Schratz
(2016). They are based on a discretization of the Zakharov system after applying the mentioned
transformation of Ozawa & Tsutsumi (1992), and they don’t require the CFL condition (3.20).
In contrast, the transformation of Ozawa & Tsutsumi (1992) is translated in Gauckler (2016b)
to the discrete level of a numerical method, and it is shown how this can be used to analyze an
existing and well-established numerical method. It is expected that this approach is also useful
to analyze other numerical methods for a wider class of equations where it is difficult to exclude
a loss of spatial derivatives, for example for derivative nonlinear Schrödinger equations.
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